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Introduction 

Small sample testing in general, and impression creep in particular, offers the opportunity for 
owner/operators of power generation equipment to perform non-invasive testing of their high value 
equipment to determine risk or risk-ranking as they look to prioritize maintenance activities. Small 
sample concepts such as impression creep afford the opportunity to quantify high temperature creep 
behaviour relevant to high energy piping; high temperature valves; high pressure steam turbines; gas 
compressor, combustor, and turbine; and other critical components. However, in order to use this data 
in a consistent manner and have confidence in the determination of risk – either through comparative 
ranking or through component-specific life prediction, this test method needs to be internationally 
recognized and demonstrated to be consistent. 

Assessment of in-service plant to determine remnant life is of obvious significant industrial interest, 
particularly to high temperature plant operators, where plant life extension or confirmation of existing 
plant life is needed. As more power plants operate beyond their design life, the requirement for these 
services increases.  

In addition to application to plant, the technique has potential use in materials research in general. 

Specific examples include alloy development, where it provides a rapid method of performance 

ranking on small amounts of material, and investigation of strength variation within large section 

components. 

There are significant commercial benefits in using impression creep testing over conventional 

uniaxial creep testing. These include: 

• The ability to produce creep strain data relatively quickly. 

• The small specimen size makes extraction from components feasible without significantly 

affecting the structural integrity of plant. 

• The possibility to test a single specimen at several stresses or temperatures enables multiple 

assessments. 

• Increasingly, the maturity of underlying technical understanding and quality of results 

increases confidence in the technique.  
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1 Scope 

In order that operators of power plant can use impression creep testing as an integral part of the 
remanent life strategy they adopt for their high temperature components, impression creep needs to 
become a more generally accepted test method. There is an associated need for standardisation of both 
the test technique itself and the use that is made of the data generated. This should lead to acceptance of 
the approach by power plant operators and third parties such as plant insurers, boiler inspectors, etc.  

The impression creep test method, using a rectangular indenter, has been used extensively in the last 10 
years, for a number of UK and EU projects and for industrial applications (e.g. TWI, British Energy, RWE 
Generation UK, Structural Integrity Associates). Some industrial organizations have already built or are in 
the process of developing the test facilities for impression creep testing. EPRI has included impression 
creep testing into a collaborative (~ 25 partners) research programme in order to assess the practicality of 
the technique. 

This document builds on, and updates, earlier recommendations/guidelines produced for impression creep 
testing [1][2][3]. 

 

2 Normative references 

The following normative references are relevant to this document.  

 

BS EN ISO 204: 2018 Metallic materials - Uniaxial creep testing in tension - Method of test 

 

ASTM E139 − 11 (Reapproved 2018): Standard Test Methods for Conducting Creep, Creep-Rupture, and 
Stress-Rupture Tests of Metallic Materials 

 

BS EN ISO 9513: 2012 Metallic materials - Calibration of extensometer systems used in uniaxial testing 

 

BS EN ISO 7500 - 1: 2018 Metallic materials - Calibration and verification of static uniaxial testing machines 

 

3 Terms and definitions 

3.1 

Impression Creep Test 

The Impression creep test is a small-scale testing technique in which the indentation rate of a 
rectangular indenter into a parallel sided rectangular specimen can be converted into equivalent creep 
strain rate. 

3.2 

Impression Monkman Grant Relationship 

The Impression Monkman Grant relationship is an empirical relationship between the creep strain rate 
obtained in the impression test and the rupture life obtained in a conventional uniaxial creep test at the 
same stress and temperature. 
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4 Impression Creep Testing Using a Rectangular Indenter 

As shown in Figure 1, the impression creep testing technique involves the application of a steady load F to a 
flat-ended, rectangular indenter of width d placed on the surface of a rectangular specimen of surface area 
b x w and height h at elevated temperature. The displacement-time record from such a test is related to the 
creep properties of a relatively small volume of material in the immediate vicinity of the indenter [4]. Tests 
are most easily described in terms of specimen/indenter dimensions, eg 10x10x2.5mm specimen + 
1.0mm indenter.       

 

 

 

 

Fig. 1  Impression creep test with a rectangular indenter. 

 

 

 

4.1  Conversion Relationships 

For the rectangular type of indenter, it has been shown [4] that the reference stress approach can be used 
to convert the mean pressure under the indenter, p , to the corresponding uniaxial stress, , i.e. 

  = p           (1)   

and to convert the creep displacement, c, to the corresponding uniaxial creep strain, c, i.e. 

 
d

c
c




=          (2)   

where  and  are conversion parameters (reference parameters) and d is the width of the rectangular 
indenter, Fig. 1(a). Therefore, the secondary creep properties can be obtained from impression creep test 
data using such conversion relationships. The technique can produce accurate results when the impression 
creep deformation occurring during the tests is small, compared with the indenter width or the specimen 
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thickness. These conversion factors are material independent. They depend on dimension ratios of 
indenter and specimens and have been determined previously for a practical range of dimensions [4,5]. 

 

4.2  Typical Test Result 

A typical indentation trace is shown in Figure 2. Once the indenter is fully embedded, the deformation 
rate (depth of indentation with time) becomes near linear. The measured indentation rate can then be 
converted into the equivalent creep strain rate. 

 

Fig. 2 Typical indentation trace 

 

 

5 Apparatus 

5.1 Requirements of Test Rigs 

Both standard servo-electric machines or specially designed dead load rigs can be used for impression 
creep testing. The fundamental elements of the test machines should include the loading system, 
deformation measurement system, heating and temperature control system, inert gas environment (if 
necessary) and the data recording system etc.  

In most practical cases, the load required for impression creep tests are within a range of 1 to 5kN, for 
the recommended specimen and indenter dimensions described in Section 5. Therefore, to ensure 
accurate load application, it is recommended that the full load capacity of the test rigs should not exceed 
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100kN. A 10kN load capacity would generally be satisfactory for a purpose-built impression creep test 
rig. 

A typical test rig, in which the loading fixtures and extensometers etc, are similar to those used for a 
uniaxial creep test, can be seen in Figure 3. Because of the relatively simple testing geometry the 
impression creep test can be carried out on a variety of test rigs. The earliest tests were carried out on 
relatively complex rigs with a capacity well in excess of that required. Subsequently simpler rigs were 
adopted by several testing laboratories. These were fitted with a 10kN compression load cell able to 
operate at continuous stationary loads of up to 10kN. The machines have LVDTs with a range of 1mm, 
and appropriate logging software. More recently Jacobs have demonstrated the use of a modified 
deadweight rig. To an extent, regardless of the basic rig design, the loading fixtures, extensometers, and 
furnace are interchangeable.  

 

 

 

                    

 

Fig. 3 Examples of different impression test rigs, one employing a ceramic indenter, and an inert 
atmosphere, the other using a nickel-based indenter and a normal atmosphere. 

 

6 Test Pieces 

6.1 Indenter and Specimen 

The indenter and specimen geometries are fully defined by three ratios, i.e. w/d, w/b and h/d, where d 
is the width of the indenter and w, b and h are the width, breadth and height of the rectangular 
specimen (see Fig 1 in Section 4). 



prEN XXXX:XXXX (E) 

 

9 

 

6.2  Indenter Requirements 

The material of the indenter must be significantly stronger in creep than the test material. Nickel-based 
superalloys have been used for the indenters. The minimum creep strain rates for these materials, at 
the same stress and temperature levels, are orders of magnitude lower than those of typical power 
plant steels tested, e.g. low alloy steel or grade 91, in the applicable stress and temperature ranges. The 
widths of the indenters which have been used are 1.0mm or 0.8mm. The length of the indenter should 
be slightly longer than the length of the specimen, as illustrated in Fig.1. The indenter must be carefully 
machined and should be checked after each test. Grinding of the contact surface of the indenter may be 
needed after a number of tests. Care should be taken to ensure that the specimen surface is parallel to 
the flat surface of the indenter. 

One of the laboratories has successfully demonstrated the use of a ceramic indenter, which opens up 
the possibility of testing stronger materials [6].  

6.3  Recommended Specimen and Indenter Dimensions 

The majority of early tests were carried out on specimen with dimensions of w x b x h = 10 x 10 x 
2.5mm with indenter dimension d = 1mm. More recently specimens with w x b x h = 8 x 8 x 2mm with d 
= 0.8mm have been adopted. Such specimen sizes and dimension ratios ensure that full contact is 
maintained between the specimen and the supporting bar, and they prevent significant bending 
deformation from occurring. In addition, specimens of this size can be produced, in most cases, from 
scoop samples, and from the HAZs from, for example, main steam pipe welds in power plants. In some 
cases, where insufficient material was available, these standard specimen dimensions have had to be 
reduced. In these cases, modified conversion factors should be applied [7]. 

In terms of surface preparation, the requirements for the indenter are the same as those for the 
specimen, as shown in Section 6.4 below. 

6.4  Specimen Preparation 

The important requirements in specimen preparation are the quality of the two contact surfaces and 
the accuracy of the thickness. A small excess for each contact surface should be left during the initial 
machining, and the two surfaces should then be carefully ground to the final thickness to remove any 
machining marks and to eliminate the residual stresses and surface damage which might have been 
caused by the initial machining. 

Any final polishing of the specimen is typically carried out using FEPA P120 (ANSI #120 grit) followed 
by FEPA P500 (ANSI #320 grit) sandpaper. It is considered that the surface finish of the specimen is less 
critical than that the top and bottom surfaces of the specimen are parallel. During polishing, therefore, 
the specimen thickness should be checked at multiple points on the surface to ensure that the surfaces 
are parallel within +/- 0.01mm. The specimen should have an arithmetic mean roughness Ra value of 
maximum 0.30µm or 12 micro-inch. 

 

7 Testing, Measurement and Control 

7.1  Indenter and Specimen Alignment and Load Application 

Accurate alignment between the indenter, lower loading bar and the specimen must be achieved before 
starting a test. The indenter should be located in the middle of the specimen and the accuracy of the 
location should be checked after the test. The method of load application should be such that the load 
can be controlled to +/-1% agreeing with recommendations for creep testing by ECCC. The load system 
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should be accurately and regularly calibrated. A key factor is that the indenting surface of the indenter 
and the specimen surface to be indented, are parallel. 

To demonstrate reproducibility of the test, a rig hysteresis check is recommended (see 6.4.1).  

7.2  Displacement Measurement  

Extensometry and strain gauging which measure the deformation of the indentation in a continuous 
way may be used if they are suitably calibrated and applied in accordance with good testing practice 
and the manufacturer’s instructions. The displacement of the indentation deformation should be 
continuously recorded and monitored.  

The recorded maximum total indentation deformation (occurring at the end of the test) can be checked 
by measuring the depth of indentation after the test. The opportunity can also be used to identify any 
wear on the indenter. The use of a laser microscope can improve the accuracy of this process. 

Using an example from one of the laboratories, the deformation measurement system adopts a loading 
arrangement similar to that used for a uniaxial creep test. The specimen fits between the indenter and 
an anvil that replicate a uniaxial specimen. The extensometer is located on the reproduced knife ridges. 
Two water cooled LVDTs measure the movement of the extensometer and hence indentation depth, 
outside the furnace. The signal from the LVDTs is averaged by the signal conditioning system on the 
Mayes machine and recorded on a data logger. The measuring range of the extensometers is +/-0.2mm 
with an accuracy of +/-0.5%. 

7.3  Temperature Control and Test Environment 

The impression creep tests can be performed in air if the test temperatures are within the normal range 
of operating temperature for the material.  

Using Nottingham University as an example, three 0.5mm dia. K type thermocouples are used to control 
the temperature. The middle one is close to the specimen and the upper and lower thermocouples are 
about 25mm away from the specimen, near to the extensometer ridges. These positions may not always 
be held at the specified temperature due to the heat balance in the furnace. However, experience of 
many tests, with the temperatures checked by calibrated thermocouples and visual output, has 
produced a high degree of confidence in using such methods. Platinum resistance probes could be used 
in order to obtain a higher level of accuracy of temperature control or measurement. 

A more direct procedure is to spot weld a thermocouple to the specimen itself. In this case it should be 
attached on a side of the specimen away from the indented surface to ensure that it does not interfere 
with the indentation process. Additionally, the spot weld itself should not extend beyond the specimen 
thickness and the thermocouple wire should be arranged so as to avoid putting any stray loading on the 
specimen. 

7.3.1 Types of Thermocouple 

Thermocouples should meet the requirements of BS EN ISO 204 (see Section 2). 

7.4  Test Procedure 

The test procedure can be carried out as either a single step test at one stress and one temperature, or 
as a stepped stress test in which the stress is changed during the test at a single temperature. Stepped 
temperature tests, in which the temperature is changed during the test at a single stress can also be 
carried out, but this variation is not discussed here.  
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7.4.1 Hysteresis Check 

The purpose of the hysteresis check is to ensure the proper operation of the displacement 
measurement system. The hysteresis check immediately before heating up will also help achieve a good 
contact between the specimen and the indenter by smoothing out surface roughness and reducing 
microscopic misalignment. 

After positioning and aligning, the specimen is pre-loaded with a small, controlled force (typically 10-
100 N). The whole testing set-up is then subjected to several (3-5) loading cycles at room temperature 
up to the intended testing load or below the elastic limit of the tested material, whichever is lower, until 
the hysteresis between the cyclic loading and unloading curves becomes minimized. The loading can be 
done either at a constant loading rate (typically 2 MPa/s) or in a stepwise manner having 5-10 load 
steps between the minimum and maximum load. The displacement response is recorded and plotted as 
hysteresis loops of displacement versus load. In case of constant rate load ramp the operator has to 
make sure that the data logging system is fast enough to record the load and displacement in real time, 
otherwise the loading rate has to be lowered. In case of stepwise loading the operator has to make sure 
that all the signals have fully stabilised before taking the readings.  

After the hysteresis check the test set-up is heated at a small pre-load (max 25% of the test load) to the 
test temperature without removing the specimen. Care must be taken that the compressive load is on 
all the time during heating up in order to maintain the contact between the indenter and the specimen. 

After gaining confidence in the displacement measurement system the hysteresis check can be regarded 
as voluntary, but periodical checks are recommended in order to spot any malfunctioning of the 
extensometer system. The hysteresis check procedure is mandatory if such changes are made to the rig 
which could influence the displacement measurement. 

7.4.2 Single Step Test 

The test should aim to have a duration of 400+/-50hrs at the required stress, with the impression 
indentation rate measured by linear regression over the last 100hrs.  

A +/-50hr margin has been chosen to enable test laboratories to continue testing over a weekend, if 
necessary. The indentation rate should be measured by linear regression over the last 100hrs of the 
test.   

7.4.3 Stepped Stress Test 

The test will start with the lowest stress and increase stress. 

An initial step of 400+/-50hrs will be carried out at the minimum stress, with the impression 
indentation rate measured by linear regression over the last 100hrs.  

Subsequent steps will be carried out at gradually increasing stress levels, each step lasting 150+/-50hrs, 
with the indentation rate again measured over the last 100hrs of each step. The contact between the 
indenter and the specimen must be maintained at all times. 

 

7.4.4 Specimen/Indenter Dimensions 

The impression specimen/indenter dimensions will be 10mm x 10mm x 2.5mm with a 1.0mm wide 
indenter or 8mm x 8mm x 2mm with a 0.8mm wide indenter. All the test laboratories are believed to be 
able to test the larger configuration and some can test the smaller. See Sections 6.3 and 6.4. 



prEN XXXX:XXXX (E) 

 

12 

 

7.4.5 Limitation to Indentation 

Historically indentation has been limited to 10% of specimen thickness (ie dimension h in Fig 1, Section 
4). Analysis to support this has been published [8]. 

7.4.6 Post-Test Procedure 

Once the test is completed the load should be reduced to a level of preload before turning the furnace 
off. This preserves the indentation surface, avoiding further oxidation. The load can be removed 
completely once the furnace has reached room temperature. 

7.4.7 Test Validity 

The test can be considered valid once the trace has become acceptably linear. The linearity of the 
indentation trace can be assessed against the following validity criteria: 

7.4.7.1 Basic Validity 

The trace can be regarded as sufficiently linear if the difference between the rate measured over the last 
100 hours and the rate measured over the last 75 hours is less than 10%.  

7.4.7.2 Complex Validity 

Percent variation should be calculated using ±10-hour time increments from the already calculated 
strain-rate vs. time curve, using the following equation:  

% 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = (𝑉1 − 𝑉2)/((𝑉1 + 𝑉2)/2) 𝑥 100 

                      ….where V1, V2 are the rates at the start and end of the time interval. 

 Again, the variation should be less than 10%. 

7.4.8 Interrupted Tests 

Because the impression creep test does not destroy the specimen, it is possible in principle to return to 
a specimen and continue testing at a later date, In this case, care is required in realigning the indenter to 
the groove created by the first period of testing, but several laboratories have accomplished this 
successfully.  

Where a test is interrupted unintentionally, perhaps for example by a power cut, the specimen should 
remain under load until the power is returned and the test conditions are restored. If necessary, the test 
or the relevant step in a stepped stress test should be extended to meet the requirement of measuring 
the indentation rate over 100hrs (see 7.4.2 and 7.4.3).   

 

8 Reporting Requirements 

The report of an impression creep test should include the following details: 

Material  

Specimen identity 

Specimen dimensions 

Specimen/indenter orientation (see Annex A4) 

Indenter dimension 
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Indenter material 

Test temperature 

Load(s) 

Converted stress(es) 

Total test duration 

Individual step duration 

Range of time over which the rate is measured 

Validity 

Confirmation of room temperature stability 

Named individual carrying out the test (optional) 
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Annex A 
(informative) 

 

A.1 Relationship to uniaxial creep test properties 

A.1.1 The Impression Monkman Grant Relationship 

While the impression creep test does not produce a specimen failure, the equivalent uniaxial rupture 
life corresponding to each impression creep strain rate measured can be estimated via an empirical 
relationship between creep strain rate and uniaxial rupture life, such as Monkman Grant. It must be 
recognised however that, because the impression creep test is a constant stress test and the uniaxial 
rupture test is a constant load test, the strain rates in the two types of creep test are not 
interchangeable. Necking down of the specimen during the uniaxial creep test results in an increase in 
stress during the test which is absent in the impression test. As a consequence, the resulting strain rate 
in the uniaxial case will rise, with this effect increasing with the ductility of the material. 

To compensate for this effect, use can be made of an empirical relationship between the creep strain 
rate measured in the impression creep test and the rupture life in a uniaxial test carried out at the same 
nominal conditions. This relationship, termed the “Impression Monkman Grant” relationship has been 
found to be reproducible and can, in principle, be established for any given material. 

Where possible, impression creep testing should be carried out at the same temperature and stress 
conditions used for the uniaxial testing, to produce “paired values” of impression creep strain rate and 
uniaxial rupture life. Where this is not possible, an Impression Monkman Grant relationship can 
nevertheless be produced by using interpolated values of rupture life at the impression test conditions, 
where sufficient uniaxial data are available in the range of interest. 

While the precise relationship may vary with material, an example is shown in Figure A1. In this case 
the material of interest was aberrant (mis heat-treated) grade 91 and paired values obtained from five 
different materials from a variety of sources [A1].  

 

 

Figure A1: Impression Monkman Grant relationship for aberrant grade 91, using paired values of 
impression creep rate and uniaxial rupture life at the same test conditions for five aberrant (100% ferrite) 
grade 91 materials. 
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The equation derived is:   

ICR = 0.0051499 tf -0.7083                         

                                   …. where ICR is the impression creep strain rate (per hour) and tf is the rupture life 
(in hours) in conventional uniaxial creep testing at the same stress and temperature. 

It should be noted that the relationship derived allows either impression creep strain rate data to be 
converted into equivalent rupture life or rupture data to be converted into impression creep strain rate 
data. In this case this enabled the strength relative to mean grade 91 material to be determined by 
either method. 

 

Reference 

A1. S J BRETT, A BRIDGES & D PURDY. The creep strength of aberrant grade 91 steel. Materials at High     
Temperatures. Published online: 10 May 2021. DOI: 10.1080/09603409.2021.1912581 

 

A.2 Guidance on specimen sampling from components 

The information provided here is drawn from scoop sampling carried out in the UK on low alloy steam 
pipework, but is considered to be generally applicable to on-site sampling.   

 

A2.1 The impression creep specimens from main steam and hot reheat steam pipe were taken from on-
site scoop samples obtained with an on-site sampler. A number of portable sampling devices are 
currently available, including mechanical cutting electro-discharge cutting and tube drilling options. 

 

A2.3 The scoop samples were obtained in the form of shallow discs, typically 24-28mm across at their 
widest circumference and up to 3.5-4.5mm thick (in the through-wall direction), with a mass of 6-10gm. 

 

A2.4 The sampler used had a 50mm diameter hemispherical mechanical cutter which defined the 
curvature of the sample at its deepest part. The sample surface corresponding to the original pipe 
surface is flatter, reflecting the much larger diameter of the pipes sampled (typically 350mm for main 
steam and 450mm for hot reheat).  

 

A2.5 The depression left in the pipe surface also reflects the diameter of the hemispherical cutter. For 
the pipe sampled it was no greater than 5mm deep at its deepest point and up to about 30mm across. 
Care was taken to de-burr and polish the shallow excavation. 

 

A2.6 Cutting time was found to be variable, depending primarily on the size of the scoop sample and the 
individual cutter. A typical cutting time was 1.5-1.75 hours, although this could lengthen considerably in 
the event of power loss or mechanical breakdown. More modern versions of mechanical samplers have 
successfully obtained scoop samples of the required size in under an hour.  
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A2.7 In order to track scoop samples during subsequent processing, each one was individually labelled 
with a unique identification number as soon as it became available. The sampling location of each scoop 
sample was also recorded. 

 

A2.8 Specimen Manufacture in Relation to Testing 

 

A2.8.1 For these specimens a standard test at the same stress and temperature was adopted as an initial 
ranking exercise. Because the specimens are not destroyed in an impression test, they were able to be 
retained for more elaborate testing (e.g. stepped stress or stepped temperature) at a later date.   

 

A2.8.2 A standard test specimen size of 10mm10mm2.5mm thick was adopted. This was sufficiently 
thick to allow the ranking test to be followed by further testing, if required.   

 

A2.8.3 For typical main steam and hot reheat pipework geometries sampled, scoop samples needed to 
be a minimum of 3.2mm thickness (excluding any oxide scale present), to yield a specimen of this size.  

 

A2.8.4 Where this could not be achieved the options were to use an alternative standard size (e.g. 
8mm8mm2mm) or a 10mm10mm2.5mm specimen with partially reduced dimensions. In either 
case the loads were adjusted to test the specimen at the common stress condition. 

 

A2.8.5 During machining of the specimen the surface corresponding to the greatest depth in the pipe 
was identified as the test surface. The intention was that the point of impression should correspond to 
material as deep into the pipe as possible. In practice this was found to be 2.5-3mm. The first step in the 
specimen preparation was to trim the scoop sample to approximately 13mm square using a fine 
hacksaw. The spherical surface was then surface ground until a flat approximately 12mm diameter was 
generated: the sample was then turned over and the outer side ground to a specimen thickness of 
2.7mm. The edges were then machined to give a specimen 10mm10mm 0.05mm. Both faces were 
then finish ground to 2.5mm 0.02mm. The proportion removed from either face of the specimen was 
adjusted such that the spherical profile of the scoop sample was still visible on the corners of the 
specimen. This ensured that the impression test was made at the deepest point in the sample and gave 
visible proof of the direction of loading. 

 

A2.8.6 The small off cuts obtained from the specimen preparation exercise were retained and returned 
with the tested specimen. These were then available to provide metallographic information, hardness 
and (possibly) limited chemical analysis.  

 

 

A.3 Conversion Between Indentation Rate and Creep Rate 

The impression creep testing technique involves the application of a steady load to a flat-ended 
indenter, placed on the surface of a material at elevated temperature. The displacement-time record 
from such a test is related to the secondary creep properties of a relatively small volume of material in 
the immediate vicinity of the indenter. As shown in Section 4, for a rectangular indenter, the reference 
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stress approach can be used to convert the mean pressure under the indenter, p, to the corresponding 
uniaxial stress, σ, i.e. 

 = p      

and to convert the creep displacement to the corresponding uniaxial creep strain i.e. 

d

c
c




=                                         

where η and β are the reference parameters (conversion factors) and d is the width of the rectangular 
indenter (see Fig.1, Section 4).  

The load required to produce a given stress is σ/η and the measured indentation rate is divided by βd 
to produce the equivalent uniaxial creep strain rate. 

For a specimen with w = b = 10mm, h = 2.5mm and indenter width d = 1.0mm, the conversion factors 
obtained from a 3D Finite Analysis [A3] analyses are: 

η = 0.430 

 β = 2.180 

The indentation rate measured in the test is therefore divided by 2.18 to produce the creep strain rate. 

For a specimen with w = b = 8mm, h = 2mm and indenter width d = 0.8mm, while η and β remain 
unchanged, the factor between indentation rate and creep strain rate changes to 2.180 x 0.8 = 1.744. 

 Similarly, for a given stress, the load will be reduced a factor of 0.8 x 0.8 = 0.64. 

Where the standard dimensions (h = 2.5mm, d = 1.0mm, or h = 2.0mm, d + 0.8mm) are not precisely 
met, the following corrections can be made to the conversion factors. These are applicable within, or 
close to, the size range for which most data are available. 

 

 

 

Reference 

A3. T.H. Hyde, W. Sun, “Evaluation of conversion relationships for impression creep test at elevated 
temperatures,” International Journal of Pressure Vessels and Piping 86 757-763, 2009. 

Polynomial Fitting of Impression Test Conversion Factors (R2 = 1)  

(h/d = 2.0 – 2.5) 

 

𝜂 = 0.056  
ℎ

𝑑
 

2

−  0.338  
ℎ

𝑑
 +  0.926 

𝛽 = −0.0992  
ℎ

𝑑
 

2

+  0.9036 
ℎ

𝑑
+  0.5407 
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A.4 Specimen/Indenter Orientation 

 

 

 

 

1. The circumferential, longitudinal, and radial directions correspond to the original sampled 
component, in this case assumed to be a pipe. The circumferential direction is clockwise when looking 
in the longitudinal direction.  

 

2. Specimen orientation is defined by whichever of these directions is normal to the indented 
surface, with the arrow representing the direction of indentation. 

 

3. Each specimen orientation has two possible indenter orientations, defined by the direction 
corresponding to the line of intersection with the specimen. 

 

4. Chamfered corners, sometimes called “witness marks”, in each case placed in the positive 
quadrant, are used to distinguish the indented surface. For R type specimens this mark is on the side 
furthest away from the component surface (consistent with the convention previously used for 
specimens machined from scoop samples).  

 

 

A.5 Round Robin Testing 

Interim for Draft for Comment – this Section to be to be updated when the tests are complete.  

To provide confidence in the use of impression creep testing, this CWA has included a Round Robin 
exercise on a common material using a common test procedure.  
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The common material chosen is referred to as Bar 257, a grade 91 forging with lower bound creep 
strength. This material was originally obtained from a header manufacturer in the UK as a section of 
cylindrical forged bar with an outside diameter of 257mm. Records showed that it had been normalised 
for 5.5 hours at 1040°C in the austenite range, air cooled to produce transformation to martensite, 
tempered for 12 hours at 760°C, and then air cooled. Its microstructural condition was tempered 
martensite with a Vickers hardness of 204. Material held by EPRI was distributed to the other 
participating laboratories. 

The chemical composition was provided by the manufacturer on the original material test certificates 
(Cameron Serial No. 28584 – Cast No. P9661-1-2 and Clyde Shaw Cast No. G5535) but more detailed 
analyses were carried out subsequently as part of several collaborations. The most recent, carried out 
by EPRI, is shown below.  

 

Table A5.1 Bar 257 Chemical Composition 

Composition (wt%) 
C S O N Al B Ca 
0.122 0.0081 0.0015 0.0282 0.028 <0.0005 <0.0005 
 
Co Cr Cu Fe La Mn Mo 
0.015 9.097 0.14 88.25 <0.002 0.53 1.05 
 
Nb Ni P Si Ta Ti V 
0.063 0.16 0.015 0.25 0.002 0.002 0.209 
 
W Zr As Bi Pb Sb Sn 
<0.002 <0.002 0.013 <0.0001 0.000055 0.0019 0.008 
 

 

The common test procedure adopted was a four-step stepped stress test at 100MPa, 110MPa, 120MPa 
and 130MPa, at 600°C. The specimen/indenter dimensions were 10x10x2.5mm/1.0mm (conversion 
factors: η = 0.430, β = 2.180), with the standard test configuration being LR (see A4). One laboratory 
chose to use an 8x8x2.0mm/0.8mm combination (see Section 6.3). 

The Round Robin repeated an earlier exercise involving four of the participating laboratories which had 
tested the same material, but which had not used the newly agreed common testing procedure 
[A5.1][A5.2]. For the remainder of this section the earlier Round Robin will be referred to as “RR1” and 
the current CWA Round Robin as “RR2”.  

 

RR2 allows several comparisons to be made: 

 

• Laboratory to laboratory variation in the impression creep strain rates. 
 

• Comparison of the RR2 results with the earlier RR1 results. 
 

o Comparison of creep strength for this material. 
o Comparison of Impression Monkman Grant relationship for this material (see A1). 
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The interim results obtained to date, from three of the laboratories, are summarised below. 

 

Table A5.2 The Results of the RR2 Impression Tests (by Laboratory) 

Laboratory Series Material Orientation Specimen Indenter  
Nottingham RR2 Bar 257 LR 10x10x2.5mm 1.0mm  
 
Load (N) Stress 

(MPa) 
ICR (/hr) Log ICR Hours Range R2 

Value  
Validity 
100hrs/75hrs 

2325 100 1.1827E-05 -4.9271 360-460 86.58% 0.8903 

2557 110 16383E-05 -4.7856 530-630 87.15% 1.0364 

2791 120 3.2553E-05 -4.4874 695-795 97.6% 1.0570 
3023 130 6.5282E-05 -4.1852 845-945 99.14% 1.0373 

 
Laboratory Series Material Orientation Specimen Indenter  
VTT RR2 Bar 257 LR 10x10x2.5mm 1.0mm  
 
Load (N) Stress 

(MPa) 
ICR (/hr) Log ICR Hours Range R2 

Value  
Validity 
100hrs/75hrs 

2325 100 5.323E-06 -5.2738 444-545 97.31% 1.0006 

2557 110 1.1693E-05 -4.9321 617-717  99.51% 1.0296 
2791 120 2.1356E-05 -4.6705 780- 880 99.87% 1.0160 

3023 130 3.8399E-05 -4.4157 1005-1040  99.75% ----- 

 
Laboratory Series Material Orientation Specimen Indenter  
Jacobs RR2 Bar 257 LR 8x8x2.0mm 0.8mm  
 
Load (N) Stress 

(MPa) 
ICR (/hr) Log ICR Hours Range R2 

Value  
Validity 
100hrs/75hrs 

1488 100 6.7702E-06 -5.1694 325-425 79.24% 0.8426 

1637 110 1.3896E-05 -4.8571 486-586 92.29% 1.0579 

1786 120 2.1805E-05 -4.6614 657.5-757.5 98.36% 1.145 

1935 130 3.2857E-05 -4.4834 822.5-922.5 99.36% 1.06 

NB: Loads are lower for Jacobs because of the choice of a smaller specimen/indenter size. 
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Figure A5.1. Interim Impression Creep Results at 600°C from RR2. 

 

As shown in Fig.A5.1, the data are in good agreement. 

 

To obtain equivalent rupture life from the impression creep strain rates use must be made of the 
Impression Monkman Grant relationship for this material (see A1). Although uniaxial rupture lives at 
600°C are not available at the specific stresses used in RR2, interpolated values can be used. 

Uniaxial rupture data for Bar 257 in the range 97-140MPa at 600°C is shown as a Log-Log plot in Figure 
A5.2. The data have a good linear relationship over this range (R2 = 99.3%), which covers the test range 
of 100-130MPa at 600°C used for the RR2 impression tests. This allows uniaxial rupture lives to be 
derived at the specific stresses used in the impression tests by interpolation. 
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Figure A5.2. Log-Log Plot of Bar 257 Rupture Data at 600°C. 

 

Using the resulting relationship (Log Life = -10.245 x Log Stress + 24.29) shown, the interpolated 
rupture lives at the impression creep stresses are shown in Table A5.3. 

 

Table A5.3. Interpolated Values Derived from Fig. A5.1. 

 Stress 

(MPa) 

Log Hrs 

100 3.8 

110 3.3759 

120 2.9887 

130 2.6327 

 

The strength of Bar 257 relative to the ECCC2019 grade 91 assessment [A5.3] can be calculated by 
dividing the stress required to produce a given rupture life at 600°C by the stress required to produce 
the same rupture life in material with mean properties. Using the actual Bar 257 rupture lives in Figure 
A5.2 the strength is 0.7755 (Mean-22.45%), while using the interpolated values in Table A5.3 the 
strength is 0.7754 (Mean-22.46%). The close agreement provides confidence in the use of the 
interpolated values to derive the Impression Monkman Grant relationship for this material.     

The Log ICR values from Table A5.2 are plotted against the corresponding Log Hrs values from Table 
A5.3 in Figure A5.3 below. This provides an interim Impression Monkman Grant relationship to be 
derived from the RR2 results to date. 
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Figure A5.3. The Interim Impression Monkman Grant Relationship derived from RR2. 

 

 

This gives the following Impression Monkman Grant relationship for Bar 257: 

 

 Log ICR = -0.625 x Log tf -2.6514 or, alternatively, ICR = 0.002232 tf -0.625  - RR2     

 

… where ICR is the impression creep strain rate (/hour) and tf is the rupture life (hours). 

 

An analysis of the RR1 results, following a similar procedure to that used for RR2 above, has been 
published [A5.2] and the RR1 results shown in Fig. A5.4 below.  
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Figure A5.4. The Results from RR1. 

 

 

The interim RR2 data and the RR1 data are summarised in Fig. A5.5.  

 

 

Figure A5.5. The Interim Results from RR1 compared to RR2. 
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Discussion 

It is apparent from Fig.A5.5 that the interim RR2 data tend to lie above the RR1 average line, implying a 
somewhat lower creep strength. While additional RR2 data may alter this, if corroborated, further 
investigation may be required. 

 

If a significant difference is confirmed, there are several factors to be taken into account: 

 

• Although all laboratories taking participating in RR1 used a similar procedure, involving a 
stepped stress test with increasing stress, these were not as tightly defined as for RR2. 

 

• The material in RR1 was obtained at depths of up to 60mm in the original forged bar, whereas 
material in RR2 came from closer to the surface (~10mm). 

 

• The material tested in RR1 and RR2 came from two different discs cut from the original forged 
bar, potentially up to 0.5m apart. 

 

• While the RR2 material was tested in the LR specimen/indenter orientation (see Section A.4), 
the RR1 specimens were C type (CR or CL not defined). 
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